Large-Scale Structure of a Network of Co-Occurring MeSH Terms: Statistical Analysis of Macroscopic Properties
نویسندگان
چکیده
Concept associations can be represented by a network that consists of a set of nodes representing concepts and a set of edges representing their relationships. Complex networks exhibit some common topological features including small diameter, high degree of clustering, power-law degree distribution, and modularity. We investigated the topological properties of a network constructed from co-occurrences between MeSH descriptors in the MEDLINE database. We conducted the analysis on two networks, one constructed from all MeSH descriptors and another using only major descriptors. Network reduction was performed using the Pearson's chi-square test for independence. To characterize topological properties of the network we adopted some specific measures, including diameter, average path length, clustering coefficient, and degree distribution. For the full MeSH network the average path length was 1.95 with a diameter of three edges and clustering coefficient of 0.26. The Kolmogorov-Smirnov test rejects the power law as a plausible model for degree distribution. For the major MeSH network the average path length was 2.63 edges with a diameter of seven edges and clustering coefficient of 0.15. The Kolmogorov-Smirnov test failed to reject the power law as a plausible model. The power-law exponent was 5.07. In both networks it was evident that nodes with a lower degree exhibit higher clustering than those with a higher degree. After simulated attack, where we removed 10% of nodes with the highest degrees, the giant component of each of the two networks contains about 90% of all nodes. Because of small average path length and high degree of clustering the MeSH network is small-world. A power-law distribution is not a plausible model for the degree distribution. The network is highly modular, highly resistant to targeted and random attack and with minimal dissortativity.
منابع مشابه
Performance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks
Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...
متن کاملPerformance Analysis of a New Neural Network for Routing in Mesh Interconnection Networks
Routing is one of the basic parts of a message passing multiprocessor system. The routing procedure has a great impact on the efficiency of a system. Neural algorithms that are currently in use for computer networks require a large number of neurons. If a specific topology of a multiprocessor network is considered, the number of neurons can be reduced. In this paper a new recurrent neural ne...
متن کاملA new conforming mesh generator for three-dimensional discrete fracture networks
Nowadays, numerical modelings play a key role in analyzing hydraulic problems in fractured rock media. The discrete fracture network model is one of the most used numerical models to simulate the geometrical structure of a rock-mass. In such media, discontinuities are considered as discrete paths for fluid flow through the rock-mass while its matrix is assumed impermeable. There are two main pa...
متن کاملSensitivity Analysis of the Effect of Pore Structure and Geometry on Petrophysical and Electrical Properties of Tight Media: Random Network Modeling
Several methodologies published in the literature can be used to construct realistic pore networks for simple rocks, whereas in complex pore geometry formations, as formed in tight reservoirs, such a construction still remains a challenge. A basic understanding of pore structure and topology is essential to overcome the challenges associated with the pore scale modeling of tight porous media. A...
متن کاملEffect of pH on Structural Properties of Heat-Induced Whey Protein Gels
Formation and structure of whey protein heat-induced gels (100 mg mL-1) through heat treatment at 80 °C and pH modifications at three pH values of acidic (2), isoelectric (5.6) and neutral (7) were studied. The obtained results indicated that the nature of the primary gel networks was different at each pH value. The heat-induced gels produced at pH of 2 and 7, had acceptab...
متن کامل